St Philip's Catholic Primary School

Supporting your Child with Calculation

Addition

Start with:	
	Record addition by: - showing jumps on prepared lines - drawing own number line eg $6+5=11$
	Partition 2 digit numbers eg 35+23 (not crossing the tens or hundreds) using different methods of recording: - number line eg $45+13=$ not using number line eg $\begin{aligned} & 35+23 \\ & 30+20=50 \\ & 5+3=8 \end{aligned}$ $50+8=58$
........recording least significant digit first, preparing for 'carrying' below the line (compact recording). $\begin{array}{r} 358 \\ +\quad 73 \\ \hline 11 \\ 120 \\ \hline 300 \\ \hline 431 \end{array}$recording least significant digit first, preparing for 'carrying' below the line (compact recording). $\begin{array}{rr} 625 & 783 \\ +\quad 48 & +\quad 42 \\ \hline \frac{673}{1} & \frac{825}{1} \\ & 367 \\ & \\ \hline+85 \\ \hline & \\ \hline 11 \end{array}$
	Addition of decimals - Ensure that children know the importance of 'lining up' the decimal points particularly when adding mixed amounts eg $16.4 \mathrm{~m} .+7.68 \mathrm{~m}$. $\begin{array}{r} 16.4 \\ +\quad 7.68 \\ \hline 24.08 \mathrm{~m} \\ \hline \end{array}$

Subtraction

Start with:	Find own way of recording for subtraction eg cross-outs. $\begin{aligned} & \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \ngtr-2=5 \end{aligned}$ Solve practical problems in a real or role play context.
	Record simple subtraction in a number sentence using the - and $=$ signs eg. There were 8 cakes on a plate. Mary ate 3 of them. How many were left? $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \otimes \otimes \otimes$ $8-3=5$
	Use empty number lines to - Bridge through a multiple of 10 eg $22-5=17$ (counting back)
Use empty number lines to - Subtract larger numbers eg $352-79=273$ (counting back)	Continue to develop compact decomposition with different numbers of digits and decimals. Note: Children should understand the importance of lining up units digits under units digits, tens under tens etc. $\begin{array}{r} 51764 .{ }^{\prime} 0 \\ 821.6 \\ \hline 8942.4 \\ \hline \end{array}$

Multiplication

Start with:	Oral counting in twos and tens. How many shoe lace holes are there on this shoe? Oral counting on and back in small steps Eg. 2's, 3's, 5's
Understand multiplication as repeated addition eg There are 5 pencils in one packet. How many pencils in 4 packets? IIIII IIIII IIIII IIIII=5+5+5+5 or 4 lots of 5 or 4×5 This can also be shown as repeated jumps on a number line.	Understand multiplication as describing an array.
Develop informal written methods eg partitioning. It is important that children are taught to always approximate first in order to get a sensible idea of what the answer must be (partitioning supports this well). Begin with 'teens' numbers eg 13×8, then progress rapidly on to multiples of ten eg 23×8 (approx. ans. - between 160 and 200) $23 \times 8=(20 \times 8)+(3 \times 8)=160+24=184$	Grid method $23 \times 8=184$
	Long multiplication - begin with the 'grid' method. Eg. 72×38 (ans. approx. $70 \times 40=2800$)
Progress as appropriate to vertical expanded recording multiplying by the most significant digit first. Record like this: When appropriate, using expanded recording, begin to record least significant digit first, in order to prepare children for teaching compact standard method	$\begin{aligned} & \begin{array}{l} \text { Compact Standard Method ie. } \\ \times \frac{23}{} \\ \times \frac{7}{21} \\ \frac{140}{161} \end{array} \text { leading to } \longrightarrow \begin{array}{r} 23 \\ \frac{\times 7}{2} \end{array} \end{aligned}$

Division

| Solve practical problems in a real or role
 play context.
 How many pairs of socks are there in the
 drawer?
 Can you cut the cake in half? How many pieces
 are there?
 How many cakes are there in the box? Take half
 of them out. |
| :--- | | We need to put 12 cakes into boxes of 3 or |
| :--- |
| 4. How many boxes will we have? |
| cars? |

Government examples of formal written methods

ADDITION AND SUBTRACTION

SHORT MULTILPCATION

24×6 becomes

24
$\times \quad 6$
144
2

Answer: 144
342×7 becomes

Answer: 2394
2741×6 becomes

Answer: 16446

LONG MULTIPLICATION

24×16 becomes

2		
	2	4
\times	1	6
2	4	0
1	4	4
3	8	4

Answer: 384
124×26 becomes

	1	2
	1	2
\times	2	6
2	4	8
	7	4
3	2	2
1	1	

Answer: 3224
124×26 becomes

	1	2
	1	2
\times		2
	7	4
2	4	8
3	2	2
1	1	

Answer: 3224

SHORT DIVISION

Answer: 14
$432 \div 5$ becomes

Answer: 86 remainder 2
$496 \div 11$ becomes

LONG DIVISION

$$
\begin{aligned}
& 432 \div 15 \text { becomes } \\
& \qquad \begin{array}{llll}
\\
\mathbf{1} & \mathbf{5} & \mathbf{8} & \text { r } \\
\hline \mathbf{4} & \mathbf{3} & \mathbf{2} \\
\mathbf{3} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{1} & \mathbf{3} & \mathbf{2} \\
\mathbf{1} & \mathbf{2} & \mathbf{0} \\
\hline & \mathbf{1} & \mathbf{2}
\end{array}
\end{aligned}
$$

Answer: 28 remainder 12
$432 \div 15$ becomes

						2	8
	5	4	3				

$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	5×8
	$\mathbf{1}$	$\mathbf{2}$	

$\frac{12}{15}=\frac{4}{5}$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes
$\left.1 \begin{array}{ccccc} & & & 2 & 8 \\ & 5 & 4 & 3 & 2\end{array}\right] \quad 0$

Answer: $28 \cdot 8$

